
.'g ' I

Automated Fortran Conversion

Gregory Aharonian
Source Translation & Optimization

P.O. B o x 404
Belmont, Ma 02178

617-489-3727

What to do with a million lines of Fortran code? Managers
a t every major Fortran installation are asking this question
every day. Newer programming languages (C and A D A) , and newer
computer architectures (parallel, data flow) pose a serious
dilemma. How will the algorithms and mathematical techniques in
tens of thousands of Fortran programs be moved to these
environments? Further, since no language will dominate the
science and engineering arena, another question arises. With
strained programmino, staffs and budgets, how will algorithms be
maintained in multiple languages and architectures?

There are three solutions. The first is to hire additional
staff to translate programs across languages, to coordinate and
maintain large libraries of subroutines in the difierer::
languages using existing software tools. Most of the conversion
will be from Fortran to C and A D A , a project with many unresolved
issues (in particular array handling). The solution is
unfeasible economically, when you consider the number o f
combinations of environments (a language out of Fortran,C,ADA,any
other) with a new architecture (out of Cray, FPS, CSPI, Al l i a n t ,
etc.). The staff requirements and overhead will be excessive,
even if you could find enough people willing to do the v e r y
boring work of translating and maintaining software.

The second solution is to develop completely automatic
language translation programs, using all of the breakthroughs i n
software engineering, language theory, and artificidl
intelligence. The problems here are many. First n o o n e l \as
developed an efficient automatic translation system. The few ~ J I I

the market either are not completely automatic, or p r o d u c e vcbr-v
ugly and inefficient code. It is impossible for a computer (a i i d
even many humans) to translate a piece o f Fortran c o d e ~ 1 1 3 ~

operates o n different dimensioned arrays passed to the S ; ~ ; I I C

subroutine with some EQUIVALENCE and COMMON usage. Further y o u
don't want exact translations. Fortran programs were writterl
within the limitations of Fortran, when in the newer l a n g ~ a g e s
the algorithms can be expressed more clearly and efficiently.

D . 1 . 3 . 1

3. .
c' .

The third, and most practical solution, which STO and a few
others have adopted, uses an intermediate language that is easy
to translate Fortran into, and allows for source code in others
languages to be generated automatically. The intermediate
language is the union of all other programming languages (and the
trick i s to create a useful union) with some extensions that
reflect the nature o f the algorithms. The benefits o f this
approach are many. First the original Fortran program has to
rewritten only once, and then only parts o f the program; most
Fortrail code passes through without any change (i.e. assignmcf1t
and simple IF statements). Software tools arc provided to C ~ J S ~

this initial translation. Once in the intermediate langiinge, th(:
algorithm can then be obtained in any other language
automatically.

Some of the conversions (as options) include array indict,
reversal (where A(R(C,D),E(F,G)) in Fortran becomes i n I:
A[E[G][F]][B[D][C]]), many precision support (constants appc~iclr.(l
with E0,DO etc., subroutine and function names are suffixed,
ABSR, ABSD, ARSC), and insertion of timing/frequency analysis.
Manual conversion introduces errors, hindering the testing o f t.tir0
translated programs.

Figure 1 shows an example of a subroutine from the Eisp;ick
library in ten different languages. First, the subroutine is
rewritten in STO's intermediate language, and is shorter Lhan
most o f the final programs. Then, the subroutine is automatically
generated in the other languages (and back into Fortran). We
have successfully converted Linpack (and its test drivers), a n d
produced tested C, Pascal, Basic, and Fortran 77 versions (and i t
anyone has compilers for other languages, we will provide the
code for verification).

What are the disadvantages of this approach? There are t w o
main problems, which are present even if you adopt atiotticlr
solutiori to converting Fortran programs. The first probleni is
that m a n y of the newer languages are incapable of s u p p o r t i n g
numerical algorithms a s easily as Fortran does. Pascal does n o t
a l l o w subroutines to accept arrays of different sizes, m a k i r i g
subroutine libraries all b u t impossible (actually some P a s c i i l
compilers do, b u t there are at least two incompatible
implementations). Modula-2, a (weak) attempt to fix Pascal, a l s o
doesn't allow subroutines to handle different sized multiple
dimensional arrays (only ID). Neither Pascal nor Modula-2 allow
complex numbers (the suggested solution o f using records and
tiirning arithmetic expressions into scries of siihroutine or
function calls heing pathet-ic). 'I'hese languages also provide
limited m u l t i p l e precision slipport, and not the most useful
l o o p i r i g control struct.ures. Modula has no G O T O , and wtiilc most
C;O'TOs can be removed from Fortran subroutines, some very
i i n p o r t - a r i t . subroutines have G O T O s that are extremely diffi.cult to
r e m o v e . A t least in C and ADA you can use CO'l 'Os for thcse tricky
s ~ b r o u t i n e s (1 ikc t h e *INVIT algorithms in the Eispack library).
f : sul)ports Fortran programs well; its only deficiency i s the lack
o f C O M P I , I < X numbers used with t-*/ (h i n t A N S I committee! ! !) .

D . 1 . 3 . 2

OMQlNAL PAGE !?5
of rooR QUALITY

_. ~ >,
The other main problem arises with A D A , A D A has many

powerful capabilities that forces you to start from scratch t o
fully take advantage of A D A . Generics, exceptions, and other
features can only be generated if the intermediate language is as
expressive as A D A , in which case just use A D A / D I A N A to begin
with. Unfortunately there are many installations with millions
of lines of Fortran code that probably don't need all of the
power of A D A , in which case automated translation becomes
reasonable. Then languages like Occam (for parallel processing)
require additional design considerations (in this case to
efficiently use the parallel architecture).

At STO, we are undertaking a project to convert SLATEC to
multiple languages via the intermediate language: when
successful, packages such a s Spice, Nastran, and Gaussian 8 4 w i l l
be converted. These projects are quite important to the design
of the intermediate langauge in the translation challenges
provided. It is important to realize that the recoding is a
small part of the translation process. Creating software
environments f o r multi-languag- software maintenance is the more
critical task. To do s o will require flexible software
generation programs, in particular, %e based on the use o f an
intermediate language.

The approach taken by STO and others (Boyle at Argonnr,
Waters at MIT,de Maine at Auburn, Diana for ADA, Lexeme) o f u s i n g
an intermediate language and associated software tools will a l l u u
Fortran installations to move their Fortran programs i n t v n e w
environments with minimal problems. While not a p e r f e c t
solution, i t is less costly than having larger p r o g r a i n i n ~ r ~ g
staffs, and more realistic than relying on completely autoinaLir
translators.

D. 1 . 3 . 3

TYPE ARRAYlDR IS ARRAY (INTEGER RANGE <>) OF REAL;

INTEGER R A N G E <>) OF REAL1
TYPE ARRAYZDR IS ARRAY (INTEGER RANGE'<>,

PROCEDURE ORTRNR (N: IN INTEGER; LOW: IN INTEGER:
HIGH: IN INTEGER; A : IN ARRAYZDR;
ORT: IN OUT ARRAYlDR; Z : IN OUT ARRAYZDR) 1s

I, J, KL, MM, MP, MP1: INTEGER ;
G: REAL ;

BEGIN
--
-- EISPACK SUBROUTINE ORTRAN IN ADA --
--

FOR J IN 1..N LOOP
FOR I IN 1..N LOOP

END LOOP ;
Z(J,J) := l.OE+O ;

Z(1.J) : 5 O.OE+O ;

END LOOP ;

FOR MM IN 1..KL LOOP
KL := HIGH - LOW - 1 ;

MP : p HIGH - MM
IF A(MP,MP - 1) i= O.OE+O THEN

MP 1
FOR

END
FOR

END

:= MP + 1 ;
I IN MPl..HIGH LOOP
ORT(1) := A(I,MP - 1) ;
LOOP ;
J IN MP..HIGH LOOP
G := O.OE+O ;
FOR I IN MP..HIGH LOOP

END LOOP ;

FOR I IN MP..HIGH LOOP

END LOOP ;
LOOP ;

G : = G + ORT(1) * Z(1.J) ;

G : = (G / ORT(MP)) / A(MP,MP - 1) ;

Z(1,J) : = Z(1.J) + G * ORT(1) ;

END IF ;
END LOOP :

E N D :

ORTRND (N , LOW, H I G H , A , ORT, 2)
int N, LOW, H I G H :
d o u b l e * * A ; . . I

d o u b l e **Z, *ORT ;
(

/ * * /
/ *

. .

i n t I, J, KL, MM, MP, MPl :
d o u b l e G ;

EISPACK SUBROUTINE ORTRAN I N C

* /
for (J - 1 ; J <= N; J +- 1) (

for (I - 1 ; I <= N ; I +=I 1) (

1
Z [I J [J] = O.OE+O ;

Z [J] [J] = l.OE+O :
1
KL = HIGH - LOW - 1 ;
for (MM = 1 ; M M <= KL; M M += 1) (

MP = HIGH - M M ;
i f (A [M P) [M P - 11 ! = O.OE+O) (

MPl = I!P + 1 ;
f o r (I = MP1; I <= HIGH: I +n 1) (

1
f o r (J = MP; J <= HIGH: J += 1) (

ORT[I] = A[I][MP - 11 ;

G = O.OE+O :
for (I = MP; I < = HIGH: I += 1) (

1
G = (G / ORT(MP1) / A[MP][MP - 1) ;
f o r (I - MP; I < = HIGH; I += 1) (

Z [I I [J l = Z [I I [J l + G * ORT[I]:
1

G = G + ORT[I] * Z [I] [J] :

1
1

1
1

D . 1 . 3 . 5

SUBROUTINE ORTRND (N,LOW,HIGH,A,LDA,ORT,Z,LD~)
INTEGER LDA, LDZ
INTEGER N, LOW, HIGH
DOUBLE PRECISION A(LDA.1)
DOUBLE PRECISION Z(LDZ,l), ORT(1)
INTEGER I, J, KL, MM, MP, MP1
DOUBLE PRECISION G

C
C
C
C
C

190

210

290

3 4 0

3 8 0
390
400
4 1 0
4 1 1

EISPACK SUBROUTINE ORTRAN IN FORTRAN

DO 210 J = 1 , N
DO 190 I = 1 , N

CONTINUE
Z(J,J) = 1.ODtO

CONTINUE
KL = HIGH - LOW - 1
IF (KL .LT. 1) GOTO 411
DO 410 MM = 1 , KL

Z(J,I) = O.ODtO

MP = HIGH - MM
IF (A(MP - 1,MP) .EQ. O.OD+O) GOTO 400

MP1 = MP t 1
DO 290 I = WPl , HIGH

CONTINUE
DO 390 J = MP , HIGH

ORT(1) = A(MP - 1.1)

G = O.ODt0
DO 3 4 0 I = MP , HIGH

CONTINUE
G = (G / ORT(MP)) / A(MP - 1,MP)
DO 380 I = MP , HIGH

Z (J , I) = Z(J.1) + G * ORT(1)
CONTINUE

G = G t ORT(1) * Z(J,I)

CONTINUE
CONTINUE

CONTINUE
CONTINUE
RETURN
END

D.1.3.6

PROCEDURE: ORTRNR ()
INTEGER ARC: N
INTEGER ARG: LOW
INTEGER ARG: HIGH
ANY ARG: A
ANY ARC: ORT/VAR
ANY ARC: Z/VAR

END PROCEDURE
PUBLIC: ORTRNR

PROCEDURE: ORTRNR
INTEGER : I, J , KL, MM, M F , MPl
REAL : G

2 6 0 REM
262 REM
264 REM
266 REM
270 REM
3 20
340
360
380
4 0 0
4 2 0
4 4 0
4 59
4 6 0
4 8 0
500
520
5 4 0
560
5 8 0
600
6 2 0
6 4 0
6 6 0
6 8 0
7 0 0
7 2 0
7 4 0
7 6 0
780
so0
8 2 0
H Z 1
8 4 0

EISPACK SUBROUTINE ORTRAN I N BASIC

FOR J = 1 TO N
FOR I = 1 TO N

NEXT
Z(J,J) = l.OE+O

Z(1,J) = O.OE+O

NEXT

IF KL < 1 THEN GOT0 821
FOR MM = 1 TO KL

KL = HIGH - LOW - 1

MP = HIGH - MM
IF A(blP,MP - 1) O.OE+O THEN 800

blPl = MP + 1
FOR I = MP1 TO HIGH

N E X T
FOR J = MP TO HIGH

G = O.OE+O
FOR 1 = MP T O HIGH

N E X T
C = (G/ORT(MP)) / A(MP,MP - 1)
FOR I = MP TO HIGH

Z (1 , J) = Z(1.J) + G * ORT(1)
N E X T

ORT(I) = A(1,MP - I)

G = G + ORT(1) * Z(1,J)

N EX'T
R E M E N D OF IF BLOCK

N EX'I'
K E M E N D 01.' 11: I ~ I . O C K
R E M R E T U R N

E N D P K OC 1: D U K F

D . 1 . 3 . 7

0 O R T R N R :
P R O C (N. LOW. HIGH. A . O R T , Z) ;

, DCL (N ; LOW, H I G H) FIXED BIN 0 5) ;
D C L A (* , *) F L O A T DEC (6) :
DCL (Z(*,*), OR"(*)) F L O A T DEC (6) ;
D C L (I , J , K L , MM, MP, MP1) FIXED BIN (1 5) ;
DCL G F L O A T DEC (6) ;

I 'X

E I S P A C K S U B R O U T I N E OKTKAN 1 N PLI

" I
D U J = l T O N ;

DO I = 1 T O N :

END :
Z (J , . J) = 1 . O E t O :

Z(1,J) = O.OE+O ;

END ;

I F KL >= 1 THEN DO;
DO M M = 1 T O KL ;

MP = H I G H - MM :
LF A (M P , M P - 1) ! = O.OE+O THEN DO:

KL = H l C H - LOW - 1 :

M P 1 = M P + 1 :
DO I = MPL T O I t I G I I ;

O R T (1) = A (I , M P - 1) :
END ;
DO J = MP TO H I G H :

G = O.OE+O :
DO I = MP T O H I G H :

C; = G t ORT(1) * Z (1 , J) :
END *

G = (i / O R T (M P)) / A (M P , M P - 1) ;
DO I = MP T O H I G H :

E N D :
Z(1,J) = Z (1 . J) + G * O R T (1) :

E N D :
E N D ;

E N D :
E N D ;

E k ' D O R T R N K ;

D . 1 . 3 . 8

P R O C O R T R N R (N, LOW, HIGH, A : ORT, 2); BEGIN
ITEM N S :
ITSM LOW S ;
ITEM HIGH S ;
TABLE A[*,*] F ;
TABLE Z [* , *] F ;
TABLE ORT[*] F ; '
ITEM I S ;
ITEM J S ;
ITEM KL S ;

L ITEM MM S ;
ITEM MP S ;
ITEM MP1 S ;
ITEM G Y :

I 1 II

I t I t

II

11 II

II I t

EISPACK SUBROUTINE ORTRAN IN JOVIAL"

FOR J : 1 BY 1 WHILE J < = N ;BEGIN
FOR I : 1 BY 1 WHILE I <= N ;BE?IN

END:
Z[J,J) = 1.OEtO;

Z[I,J] = O . f -) E t O ;

END:
KL = HIGH - LOW - 1;
IF KL >= 1 ; BEGIN
FOR M M : 1 BY 1 WHILE MM < = KL ;BEGIN

MP = HIGH - M M ;
IF A[MP,MP - 1 1 < > O.OE+O; BEGIN

MP1 = MP t 1 ;
FOR I : MPl BY 1 WHILE I <= HIGH ;BEGIN

END:
FOR J : MP BY 1 WHILE J < = HIGH ;BEGIN

ORT[I) = A[I,I.!P - 11:

C = O.OEtO;
FOR I : MP BY 1 W H I L E I <= H I G H ; B E G I N

G = G + ORT[I] * Z[I,J];
E N i) :
G = (C; / ORT[MP]) / A[MP,MP - 1 1 ;
FOR I : MP BY 1 WHILE I < = HIGH ;BEGIN

E N D ;
Z[I,J] = Z[l.J] t G * OR1'[I];

E N D ;
END

\ID;
. .* .
1 . ' I t N ;
E N D

D . 1 . 3 . 9

TYPE ARRAYlDR - SU?ER ARRAY [I . . *] OF REAL8;
TYPE ARKAY2DR - SUPER ARRAY [1 . . * ,1 . . *) OF REAL8;

PROCEDURE OKTRNR (N:INTECER; L0W:INTEGER;
H1CH:INTEGER; VAR A:ARRAYZDR;
'JAR 0RT:ARPAYIDR; VA R Z:AERAY2DR);

VAR I, J, KL, MM, MP, MP1: INTEGER ;

BEGIN
(*

G: REAL8 ;

EISPACK SUBROUTINE OZTRAN IN PASCAL

" >
FOR J := 1 TO N DO BEGIN

FOR I :- 1 TO N DO BEGIN
Z[I,J) := O.OEtO ;

END ;
Z[J,J] := 1.OEtO ;

END ;

IF (K L > = 1) THEN BEGIN
FOR MM := 1 TO KL DO BEGIN

K I A := HIGH - LOW - 1 ;

MP : = HIGH - MM ;
IF (A[MP,MP - 1) < > O.OEtO) THEN BEGIN

MP1 : = MP t 1 :
FOR I := MPl 1:' HIGH DO BEGIN

OKT[I] := A[I,MP - 1 1 ;
END :
FOR J : = MP TO HIGH DO BEGIN

G : = O.OE+O ;
FOR I := MP TO HIGH DO BEGIN

G : = G t ORTII] * Z[I,J) ;
END :
C, := (G/OR'T[MP]) / A[MP,HP - I] ;
FOR I := YP TO HIGH DO BEGIN

Z [I , J] := Z [I , J] t G * ORT[I);
END :

E N D :
END :

END ;
END :

E N D ; (PRTRNRI

CONST NEIG -
TYPE ARRAYlDR = ARRAY [l..NEIG] OF REAL;
TYPE ARRAYZDR = ARRAY [l..NEIC,l..NEIC] OF REAL;

PROCEDURE ORTRNR (N:INT ; L0W:INT ; H1GH:INT;

\
A:ARRAY2DR; VAR 0RT:ARRAYlDR;
VAR Z:ARRAY2DR);

VAR 1, J , KL, MM, MP, MPl: INT ;

(*
G: REAL ;

EISPACK SUBROUTINE ORTRAN IN MODULA-2

"1
BEGIN

FOR J := 1 TO N DO
FOR I := 1 TO N DO

Z[I,J] := O.OE+O :
END :
Z[J,J) := l.OE+O :

END :
KL : p HIGH - LOW - 1
IF (K L >= 1) THEN
FOR MM := 1 TO KL DO

hi' := HIGH - MM ;
IF (A[MP,MP - I] < > O.OE+O) THEN

MP1 := MP + 1 :
FOR I := MP1 TO HIGH DO

ORT[I] A[I,MP - 1) ;
END :
FOR J := M P TO HIGH DO

G := O.OE+O ;
FOR T := MP TO HIGH DO

G := G + ORT[I] * Z[I,J] ;
END :
G := (C / ORT[MP]) / A[MP,MP - 11 :
FOR 1 := MP TO HIGH DO

Z[I,J] := Z[I,J] + G * ORT[I] ;
END ;

END ;
END ;

END ;
END :

END

D. 1.3.11

a- - *

-aaWmmmk-,-nw,-=
XtkltE~lIlDR', %P OH'khRRATTDP,
-VAR 2:ARRAYZDR)

-VAR I, J, KL, MM, MP, MP1: -1NT
%
%
% EISPACK SUBROUTINE ORTRAN IN TURING
%
%

G: -REAL

-FOR J : i . . ~
-FOR I : i . . ~

-END FOR
Z(I,J) := O.Oe+O

Z(J,J) :- l.Oe+O
-END FOR
KL : p HIGH - LOW - 1
-IF KL >6 1 -THEN
-FOR MM : 1..KL

MP := HIGH - MM
-IF A(MP,MP - 1) -NOT - O.Oe+O -THEN

MP1 := MP + 1
-FOR I : MPl..HIGH

-END FOR
-FOR J : MP..HIGH

ORT(1) := A(1,MP - 1)

G :- O.Oe+O
-FOR I : MP..HIGH

G :- G + ORT(1) * Z(1,J)
-END FOR
G := (G/ORT(MP)) / A(MP,MP - 1)
-FOR I : MP..HIGH

Z(1.J) := Z(1.J) + G * ORT(1)
-END FOR

-END FOR
-END IF

-END FOR
-END IF

-END ORTRNR

D.1.3.12

-PROC ORTRNR = (-INT N, -INT LOW, “INT HIGH,

-wlXr)l ‘co

[,]-REAL b , -REF []-REAL ORT,
REF [,] REAL 2) - V O I D :

EISPACK SUBROUTINE ORTRAN IN ALGOL-68

-co - INT I , .I, KL, MM, MP, ElPl :
I -REAL G

-FOR J -+ROM 1 -TO N -DO
-FOR I -FROM 1 -TO N -DO

. Z[I,J] := O.Oe+O ;
-OD :
Z [J , J] := 1.0e+0 :

-OD :
KL := HIGH - LOW - 1 :
- I F KL -GE 1 -THEN
-FOR CIM -FROM 1 -TO KL -DO

I.1P := HIGH - MM ;-
-IF A[MP,MP - 1 1 N E O.Oe+O -THEN

ClP1 : = CIP + 1 :
-FOR I -FROW MPl -TO HIGH -DO

URT[I) := A[I,MP - I] ;
-OD :
-FOR J -FROM MP -TO HIGH -DO

G := O.Oe+O :
-FOR I -FROM MP -TO H I G H -DO

G : = G + ORT[I] * Z(I,J] ;
G := (G/ORT[MP])-/ A[MP,MP - 1 1 ;
-OD :

-FOR 1 FROM MP TO HIGH -DO

-OD :
Z[I,Jl := Z[I,JI + G * ORT[I]:

-OD :
- - F I :
OD :

- F I :
- K E T U R N : ;

E N D

D. 1.3.13

